Détails Publication
ARTICLE

Good measures for nonlinear Neumann anisotropic problems with variable exponent

  • Int. J. Evol. Equ , 10 (3) : 233-251
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : OUARO Stanislas
Renseignée par : OUARO Stanislas

Résumé

We study in this paper a nonlinear anisotropic problem with homogeneous Neumann boundary condition and Radon diffuse measure data which does not charge the sets of zero p(⋅)-capacity. We first prove, by using the techniques of monotone operators in Banach spaces, the existence of weak solutions and by approximation methods, the existence and uniqueness of entropy solution.

Mots-clés

generalized Lebesgue-Sobolev spaces; anisotropic Sobolev spaces; weak solution; entropy solution; Neumann boundary condition; bounded Radon diffuse measure; Marcinkiewicz spaces

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets