ARTICLE
Good measures for nonlinear Neumann anisotropic problems with variable exponent
- Int. J. Evol. Equ , 10 (3) : 233-251
Discipline :
Mathématiques
Auteur(s) :
I. Konaté, S. Ouaro
Auteur(s) tagués :
OUARO Stanislas
Renseignée par : OUARO Stanislas
Résumé
We study in this paper a nonlinear anisotropic problem with homogeneous Neumann boundary condition and Radon diffuse measure data which does not charge the sets of zero p(⋅)-capacity. We first prove, by using the techniques of monotone operators in Banach spaces, the existence of weak solutions and by approximation methods, the existence and uniqueness of entropy solution.
Mots-clés
generalized Lebesgue-Sobolev spaces; anisotropic Sobolev spaces; weak solution; entropy solution; Neumann boundary condition; bounded Radon diffuse measure; Marcinkiewicz spaces