Détails Publication
ARTICLE

The obstacle problem associated with nonlinear elliptic equations in generalized Sobolev spaces

  • Nonlinear Dyn. Syst. Theory , 14 (3) : 224-243
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : OUARO Stanislas
Renseignée par : OUARO Stanislas

Résumé

This paper is devoted to the study of the following obstacle problem
−div(a(x,u,∇u))+g(x,u,∇u)=f in Ω,(1)
where Ω is an open bounded domain of ℝN(N≥2),a:Ω×ℝ×ℝN→ℝN is a Carathéodory function satisfying some growth, monotonicity and coerciveness conditions.
Under some suitable conditions on the function g and if f∈L1Ω, the authors prove the existence of entropy solutions to the problem (1) in the framework of generalized Soblev spaces with variable exponents using approximation and penalization methods.

Mots-clés

generalized Sobolev spaces; boundary value problems; truncations; penalized equations

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets