Détails Publication
ARTICLE

Nonlinear elliptic anisotropic problem with Fourier boundary condition

  • Int. J. Evol. Equ , 8 (4) : 305-328
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : KONE Blaise
Renseignée par : OUARO Stanislas

Résumé

The authors obtain an existence and uniqueness result of entropy solution for nonlinear anisotropic elliptic equation with Fourier boundary condition. Precisely
{−∑Ni=1Diai(x,Diu)+|u|pM(x)−2u=f∑Ni=1ai(x,Diu)νi+λu=gin Ω,on ∂Ω,
where Ω⊂ℝN, N≥3 is a bounded domain with smooth boundary, f∈L1(Ω), g∈L1(∂Ω) and λ>0.
The authors start with proving the existence and uniqueness of a weak solution when the data are bounded and deduce the main result of existence and uniqueness of entropy solution

Mots-clés

generalized Lebesgue-Sobolev spaces; anisotropic Sobolev spaces; weak solution; entropy solution; Fourier boundary condition; Marcinkiewicz spaces

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets