ARTICLE
Existence and uniqueness of weak and entropy solutions for homogeneous Neumann boundary-value problems involving variable exponents
- Electron. J. Differ. Equ. , 12 (2012) : 1-19
Discipline :
Mathématiques
Auteur(s) :
B.K. Bonzi, I. Nyanquini, S. Ouaro
Auteur(s) tagués :
BONZI Kaka Bernard
Renseignée par : OUARO Stanislas
Résumé
We study the nonlinear homogeneous Neumann boundary-value problem
b(u)−diva(x,∇u)=fin Ωa(x,∇u).η=0on ∂Ω,
where Ω is a smooth bounded open domain in ℝN, N≥3 and η the outer unit normal vector on ∂Ω. We prove the existence and uniqueness of a weak solution for f∈L∞(Ω) and the existence and uniqueness of an entropy solution for L1-data f. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.
Mots-clés
elliptic equation; weak solution; entropy solution; Leray-lions operator; variable exponent