Détails Publication
ARTICLE

Existence and uniqueness of weak and entropy solutions for homogeneous Neumann boundary-value problems involving variable exponents

  • Electron. J. Differ. Equ. , 12 (2012) : 1-19
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : BONZI Kaka Bernard
Renseignée par : OUARO Stanislas

Résumé

We study the nonlinear homogeneous Neumann boundary-value problem
b(u)−diva(x,∇u)=fin Ωa(x,∇u).η=0on ∂Ω,
where Ω is a smooth bounded open domain in ℝN, N≥3 and η the outer unit normal vector on ∂Ω. We prove the existence and uniqueness of a weak solution for f∈L∞(Ω) and the existence and uniqueness of an entropy solution for L1-data f. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.

Mots-clés

elliptic equation; weak solution; entropy solution; Leray-lions operator; variable exponent

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets