Détails Publication
ARTICLE

Weak solutions for anisotropic nonlinear elliptic problem with variable exponent and measure data.

  • Int. J. Evol. Equ. , 5 (3) : 327-350
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : KONE Blaise SOMA Safimba
Renseignée par : OUARO Stanislas

Résumé

Let Ω⊂ℝN(N≥3) be a bounded smooth domain and μ be a bounded Radon measure.
In this paper, the authors study the following anisotropic nonlinear boundary value problem:
−∑i=1N∂∂xiai(x,∂u∂xi)=μ in Ω,u|∂Ω=0,
where ai(⋅,⋅):Ω×ℝ→ℝ is a Carathéodory function (i=1,2,…,N) and there exists C1>0 such that
|ai(x,ξ)|≤C1(1+|ξ|pi(x)−1) for all ξ∈ℝ and a.e. x∈Ω,i=1,2,…,N.
Under some further conditions on ai(x,ξ) and pi(x), the existence of a weak solution for the above nonlinear elliptic problem is proved in an anisotropic variable exponent Sobolev space.

Mots-clés

weak solution; elliptic equation; variable exponent; anisotropic Sobolev spaces; Marcinkiewicz spaces; Radon measure

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets